Molecular Docking with Ligand Attached Water Molecules
نویسندگان
چکیده
A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a static part of the receptor, each water molecule is a flexible on/off part of the ligand and is treated with the same flexibility as the ligand itself. To favor exclusion of the water molecules, a constant entropy penalty is added for each included water molecule. The method was evaluated using 12 structurally diverse protein-ligand complexes from the PDB, where several water molecules bridge the ligand and the protein. A considerable improvement in successful docking simulations was found when including flexible water molecules solvating hydrogen bonding groups of the ligand. The method has been implemented in the docking program Molegro Virtual Docker (MVD).
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملMulti-body interactions in molecular docking: treatment of water molecules and multiple ligands
In the last years, the importance of water molecules in pose prediction experiments has been widely recognized and several approaches to integrate water molecules into the docking process have been proposed [1,2]. The inclusion of water molecules extends the classical two-body problem of docking a flexible ligand into a protein receptor to a multi-body docking problem as protein-ligand, protein...
متن کاملImproving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.
Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, base...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملAutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these wat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2011